Low-Complexity Recruitment for Collaborative Mobile Crowdsourcing Using Graph Neural Networks

نویسندگان

چکیده

Collaborative mobile crowdsourcing (CMCS) allows entities, e.g., local authorities or individuals, to hire a team of workers from the crowd connected people, execute complex tasks. In this article, we investigate two different CMCS recruitment strategies allowing task requesters form teams socially and skilled workers: 1) platform-based strategy where platform exploits its own knowledge about 2) leader-based designates group leader that recruits suitable given social network (SN) neighbors. We first formulate as an integer linear program (ILP) optimally forms according four fuzzy-logic-based criteria: level expertise; relationship strength; 3) cost; 4) recruiter’s confidence level. To cope with NP-hardness, design novel low-complexity approach relying on graph neural networks (GNNs), specifically embedding clustering techniques, shrink workers’ search space afterwards, exploiting metaheuristic genetic algorithm select appropriate workers. Simulation results applied real-world data set illustrate performance both proposed approaches. It is shown our GNN-based achieves close performances those baseline ILP significant computational time saving ability operate large-scale platforms. also compared strategy, more but lower SN relationships higher cost.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

rodbar dam slope stability analysis using neural networks

در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...

Monitoring of Regional Low-Flow Frequency Using Artificial Neural Networks

Ecosystem of arid and semiarid regions of the world, much of the country lies in the sensitive and fragile environment Canvases are that factors in the extinction and destruction are easily destroyed in this paper, artificial neural networks (ANNs) are introduced to obtain improved regional low-flow estimates at ungauged sites. A multilayer perceptron (MLP) network is used to identify the funct...

متن کامل

Ultra-low Complexity Control for Adhoc Mobile Sensor Networks

We introduce an ultra-low complexity decentralized control scheme for adhoc mobile sensor networks that can be used for a great variety of sensing tasks. Sensor networks using this control scheme are easy to configure, can operate completely autonomously without supervision, and automatically adapt to various environmental changes. Moreover, they are robust to individual sensor failure as well ...

متن کامل

Crowdsourcing: Low complexity, Minimax Optimal Algorithms

We consider the problem of accurately estimating the reliability of workers based on noisy labels they provide, which is a fundamental question in crowdsourcing. We propose a novel lower bound on the minimax estimation error which applies to any estimation procedure. We further propose Triangular Estimation (TE), an algorithm for estimating the reliability of workers. TE has low complexity, may...

متن کامل

A low-complexity fuzzy activation function for artificial neural networks

A novel fuzzy-based activation function for artificial neural networks is proposed. This approach provides easy hardware implementation and straightforward interpretability in the basis of IF-THEN rules. Backpropagation learning with the new activation function also has low computational complexity. Several application examples ( XOR gate, chaotic time-series prediction, channel equalization, a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Internet of Things Journal

سال: 2022

ISSN: ['2372-2541', '2327-4662']

DOI: https://doi.org/10.1109/jiot.2021.3086410